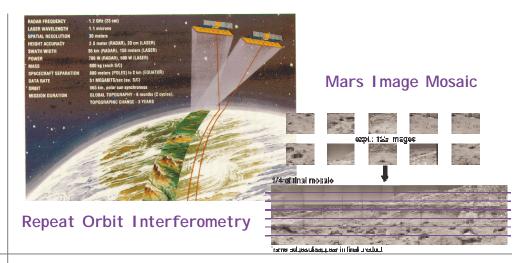


PI: Paul von Allmen, JPL
Task Completion Report

Computational Technologies - Cluster Computing



PI: Paul von Allmen, JPL

Objective

- Examine cluster computers for I/O limitations
- Compare cluster I/O to supercomputers for cost effectiveness
- Use scientific data processing application as test cases:
 - Parallel mosaic processing of Mars images.
 - Repeat Orbit Interferometry data processing (ROI_PAC)

Approach

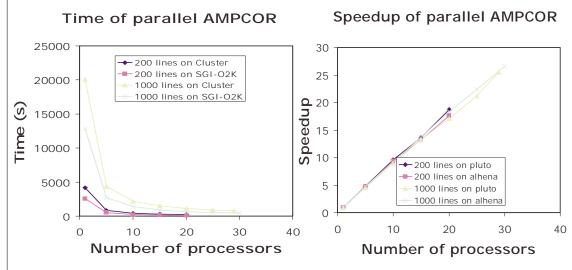
- Implement state-of-the-art networking hardware.
- Implement RAID (redundant array of inexpensive disks) system for parallel I/O.
- Parallelize scientific data processing software using Message Passing Interface
- Measure application performance, including I/O, on both clusters and SGI supercomputer

Key Milestones

 Install and test Myricom hardware 	5/02
 Study gigabyte networking systems 	9/02
 Mars I mage Mosaicing on RAID system 	1/03
 Optimize ROI_PAC on cluster with RAID 	5/03
 I mproved SRTM data processor on cluster 	10/03
 Report on parallel I/O work 	11/03
 Include parallel computation and I/O technology in 	
Open Source distribution of ROI_PAC data	
processing software.	6/04

Partner: P.Rosen, JPL

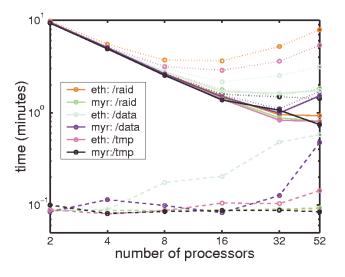
 $TRL_{in} = 4$



PI: Dr Paul von Allmen at JPL

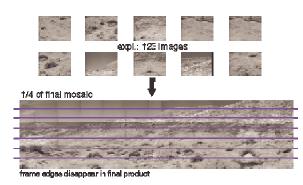
Objective

- Examine cluster computers for I/O limitations
- Compare cluster I/O to supercomputers for cost effectiveness
- Use scientific data processing application as test cases:
 - Parallel mosaic processing of Mars images.
 - Repeat Orbit Interferometry data processing (ROI_PAC)


Accomplishments

- The Parallel Virtual File System was used on cluster computers to overcome I/O issues
- Parallelized computational and I/O tasks in two subroutines of ROI_PAC (Repeat Orbit Interferometry Package for Synthetic Aperture Radar software) which constitutes most of the runtime.
- Performance on the cluster computer was comparable to performance on SGI supercomputer, at 1/10 the hardware cost.
- Sets framework for efficient parallelization of computational and input/output tasks on cluster computers and matches performance on costly shared memory architecture.
- Achieves faster turn around time for scientific data processing software at a lower cost.
- Parallel extensions will be included in the next public release of the Open Source ROI_PAC, available on OpenChannel Foundation web site.

Partner: P.Rosen/JPL TRL_{in} =4; TRL_{out}=5

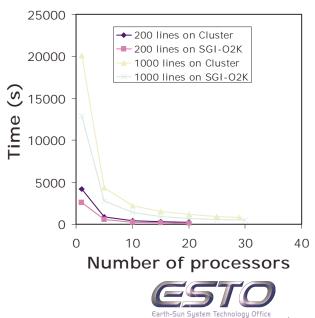


Task Leader: Paul von Allmen, JPL

RAID (Redundant Array of Inexpensive Disks) I/O System on Parallel Mosaic Software:

- Without RAID, I/O time increases with number of CPU (reaches 30% of execution time with 52 CPU).
- With RAID, I/O time stays constant with number of CPU

Mars Image Mosaic


Time of parallel AMPCOR

Repeat Orbit Interferometry ROIPAC

Optimize Performance on Cluster:

- Implement coarse-grain parallelization over data patches in AMPCOR.
- Speed-up on SGI O2K is 25 on 30 CPUs.
- Speed-up on cluster is 25 on 30 CPUs.

